Квантовая механика – это наука, которая изучает поведение вещества и света на атомном и субатомном уровнях. Квантовые вычисления используют законы квантовой механики для манипулирования информацией принципиально иначе, чем классические вычисления. В отличие от классических вычислений, которые используют двоичные цифры (биты) для представления информации либо в виде 0, либо в виде 1, квантовые вычисления используют квантовые биты (кубиты) для представления информации в виде комбинации состояний 0 и 1 одновременно.
Зачем нам нужны квантовые компьютеры?
Хотя классические компьютеры были основой современных вычислений, ограниченная вычислительная мощность не позволяет им решать конкретные сложные задачи в современном мире. Квантовые вычисления работают на другом уровне, чем классические вычисления. Вместо того, чтобы использовать биты для представления информации, квантовые компьютеры используют кубиты, которые могут представлять как 0, так и 1 одновременно. Это позволяет квантовым компьютерам выполнять множество вычислений одновременно, что делает их экспоненциально более мощными, чем классические компьютеры.
Существуют определенные проблемы, которые классические компьютеры не могут решить из-за их ограниченной вычислительной мощности. Потенциал квантовых вычислений заключается в их способности применять законы квантовой механики для решения сложных задач, на решение которых классическим компьютерам могут потребоваться годы. Эти проблемы часто сложны, с многочисленными переменными и взаимодействиями, которые затрудняют их решение с использованием классических вычислительных методов.
Квантовые компьютеры могут решать сложные задачи в области криптографии, поиска лекарств и финансового моделирования. Квантовые вычисления также обладают потенциалом произвести революцию в науке и технике. Например, квантовые вычисления можно было бы использовать для моделирования поведения молекул на квантовом уровне, что позволило бы ученым разрабатывать новые лекарства и материалы с беспрецедентной точностью. Кроме того, квантовые вычисления могут оптимизировать сложные системы, такие как транспортные сети или энергосистемы, что приводит к более эффективным и устойчивым решениям.
Ожидается, что квантовые вычисления потенциально могут оказать значительное влияние на область искусственного интеллекта. Алгоритмы квантовых вычислений могли бы обучать модели машинного обучения гораздо быстрее, чем классические вычислительные методы, что позволило бы более быстрыми темпами развивать искусственный интеллект. Кроме того, квантовые вычисления могут быть использованы для оптимизации сложных нейронных сетей, что приведет к созданию более эффективных и мощных систем искусственного интеллекта.
Как работают квантовые компьютеры?
Чтобы понять принципы квантового компьютера, мы должны сначала понять, как работают классические компьютеры. Классические компьютеры работают в двух состояниях: 1 или 0. По этой причине эти системы называются двоичными цифрами, БИТ. Один бит состоит из абсолютных состояний 1 и 0. Один pbit (вероятностный бит) может быть любым состоянием 1 или 0. Один кубит может быть равен 1 или 0. Кубиты обладают свойством суперпозиции, что означает, что они могут находиться в нескольких состояниях одновременно. Это свойство позволяет квантовым компьютерам выполнять несколько вычислений одновременно, что делает их намного быстрее классических компьютеров.
Суперпозиция – не единственное свойство, которое отличает кубиты от классических битов. Другим важным свойством является запутанность. Когда кубиты запутаны, они становятся связанными так, что их состояния коррелируют, независимо от расстояния между ними. Это свойство позволяет квантовым компьютерам выполнять операции, которые были бы невозможны с классическими компьютерами.
Для создания кубитов квантовые компьютеры используют различные технологии, включая сверхпроводящие схемы, ионные ловушки и фотонику. Одна из самых популярных технологий создания кубитов – сверхпроводящие схемы. Сверхпроводящие схемы состоят из крошечных витков сверхпроводящего провода, охлажденных почти до нуля. Схемы становятся сверхпроводящими при чрезвычайно низких температурах, что подразумевает, что они имеют нулевое электрическое сопротивление. Это свойство позволяет электронам перемещаться по цепям без потери энергии.
Для выполнения операций с кубитами квантовые компьютеры используют серию квантовых вентилей, похожих на логические вентили, используемые в классических вычислениях. Квантовые вентили управляют состояниями кубитов, позволяя квантовым компьютерам выполнять такие операции, как суперпозиция, запутывание и измерение. Поддержание когерентности кубитов является критической и трудной задачей при построении квантового компьютера.
Когерентность – это свойство, которое позволяет кубитам сохранять свои свойства суперпозиции и запутанности с течением времени. Любые помехи, такие как шум окружающей среды или нежелательные взаимодействия с другими кубитами, могут привести к потере когерентности кубитов и сделать вычисления ненадежными. Чтобы преодолеть эту проблему, квантовые компьютеры используют коды исправления ошибок, которые могут обнаруживать и исправлять ошибки в вычислениях.